

DUAL TIMER

The KA556/1 series dual monolithic timing circuits are a highly stable controller capable of producing accurate time delays or oscillation.

The KA556 is a dual KA555. Timing is provided an external resistor and capacitor for each timing function.

The two timers operate independently of each other, sharing only $\ensuremath{V_{\text{CC}}}$ and ground.

The circuits may be triggered and reset on falling waveforms. The output structures may sink or source 200mA.

FEATURES

- Replaces Two KA555 Timers
- Operates in Both Astable And Monostable Modes
- High Output Current
- TTL Compatible
- Timing From Microsecond To Hours
- · Adjustable Duty Cycle

APPLICATIONS

- Precision Timing
- Pulse Shaping
- Pulse Width Modulation
- Frequency Division
- Traffic Light Control
- Sequential Timing
- Pulse Generator
- Time Delay Generator
- Touch Tone Encoder
- Tone Burst Generator

14 DIP

ORDERING INFORMATION

Device	Package	Operating Temperature
KA556	14 DIP	0 ~ + 70℃
KA556I	14 DIP	-40 ~ + 85℃

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (T_A = 25 $^{\circ}$ C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{CC}	16	V
Lead Temperature (soldering 10sec)	T _{LEAD}	300	$^{\circ}$
Power Dissipation	P _D	600	mW
Operating Temperature Range KA556	T _{OPR}	0 ~ + 70	$^{\circ}$
KA556I	OPR	- 40 ~ + 85	${\mathbb C}$
Storage Temperature Range	T _{STG}	- 65 ~ + 150	$^{\circ}$ C

ELECTRICAL CHARACTERISTICS

 $(T_A = 25\%, V_{CC} = 5 \sim 15V, unless otherwise specified)$

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{cc}		4.5		16	V
* 1 Supply Current (two timers)	Icc	V _{CC} = 5V, R _L = ∞		5	12	mA
(low state)		V _{CC} = 15V, R _L = ∞		16	30	mA
* 2 Timing Error (monostable)		$R_A = 2K\Omega$ to $100K\Omega$				
Initial Accuracy	ACCUR	C = 0.1 µ F		0.75		%
Drift with Temperature	Δt/ΔT	T = 1.1RC		50		ppm/℃
Drift with Supply Voltage	$\Delta t / \Delta V_{ t CC}$			0.1		%/ V
Control Voltage	Vc	V _{CC} = 15V	9.0	10.0	11.0	٧
Control voltage		V _{CC} = 5V	2.6	3.33	4.0	V
Threshold Voltage	V _{TH}	V _{CC} = 15V	8.8	10.0	11.2	V
Threshold Voltage		V _{CC} = 5V	2.4	3.33	4.2	V
* 3 Threshold Voltage	I _{TH}			30	250	nA
Trigger Voltage	V _{TR}	V _{CC} = 15V	4.5	5.0	5.6	V
rrigger voltage		V _{CC} = 5V	1.1	1.6	2.2	V
Trigger Current	I _{TR}	V _{TH} = 0V		0.01	2.0	μA
* 5 Reset Voltage	V _{RST}		0.4	0.6	1.0	V
Reset Current	I _{RST}			0.03	0.6	mA
		V _{CC} = 15V				
		I _{SINK} = 10mA		0.1	0.25	V
		I _{SINK} = 50mA		0.4	0.75	V
Low Output Voltage	V _{OL}	I _{SINK} = 100mA		2.0	3.2	V
		I _{SINK} = 200mA		2.5		V
		V _{CC} = 5V				
		I _{SINK} = 8mA		0.25	0.35	V
		I _{SINK} = 5mA		0.15	0.25	V

Page: 2 (KA556)

ELECTRICAL CHARACTERISTICS

(T_A = 25 $^{\circ}\!\!\!\!\!\!\!\mathrm{C}$, V_CC = 5 ~ 15V, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
		V _{cc} = 15V I _{SOURCE} = 200mA		12.5		V
High Output Voltage	V _{OH}	I _{SOURCE} = 100mA	12.75	13.3		V
		V _{cc} = 5V				
		I _{SOURCE} = 100mA	2.75	3.3		V
Rise Time of Output	t _R			100	300	nsec
Fall Time of Output	t _F			100	300	nsec
Discharge Leakage Currnet	I _{LKG}			10	100	nA
* 4 Matching Characteristics						
Initial Accuracy	ACCUR			1.0	2.0	%
Drift with Temperature	$\Delta t / \Delta T$			10		ppm/℃
Dfirt with Supply Voltage	$\Delta t / \Delta V_{CC}$			0.2	0.5	%/ V
* 2 Timing Error (astable)		$R_A,R_B = 1K\Omega$ to $100K\Omega$				
Initial Accuracy	ACCUR	C = 0.1 µ F		2.25		%
Drift with Temperature	$\Delta t/\Delta T$	V _{cc} = 15V		150		ppm/℃
Dfift with Supply Voltage				0.3		%/ V

Notes:

- * 1. Supply current when output is high is typically 1.0mA less at V_{CC} = 5V
- * 2. Tested at V_{CC} = 5V and V_{CC} = 15V
- * 3. This will determine the maximum value of R_A + R_B for 15V operation. The maximum total R = $6.6M\Omega$.
- * 4. Matching characteristics refer to the difference between performance characteristics of each timer section in the monostable mode.
- * 5. As reset voltage lowers, timing is inhibited and then the output goes low.

Page: 3 (KA556)

